

## Note

### Synthesis of S-hepta-O-acetyl lactosyl-1,5-disubstituted-2-isothiobiurets and 1,5-disubstituted-2,4-isodithiobiurets

D V Mangte & S P Deshmukh\*

Post Graduate Department of Chemistry, Shri Shivaji College,  
Akola 444 001

Received 9 November 2004; accepted (revised) 23 March 2005

Several S-hepta-O-acetyl lactosyl-1,5-disubstituted-2-isothiobiurets **4** and 1,5-disubstituted-2,4-isodithiobiurets **5** have been synthesized by the interaction of S-hepta-O-acetyl lactosyl-1-arylisothiocarbamides **3** with phenyl isocyanate and phenyl isothiocyanate, respectively. The identities of these newly synthesized compounds are established on the basis of elemental analysis, IR, NMR and mass spectral analysis.

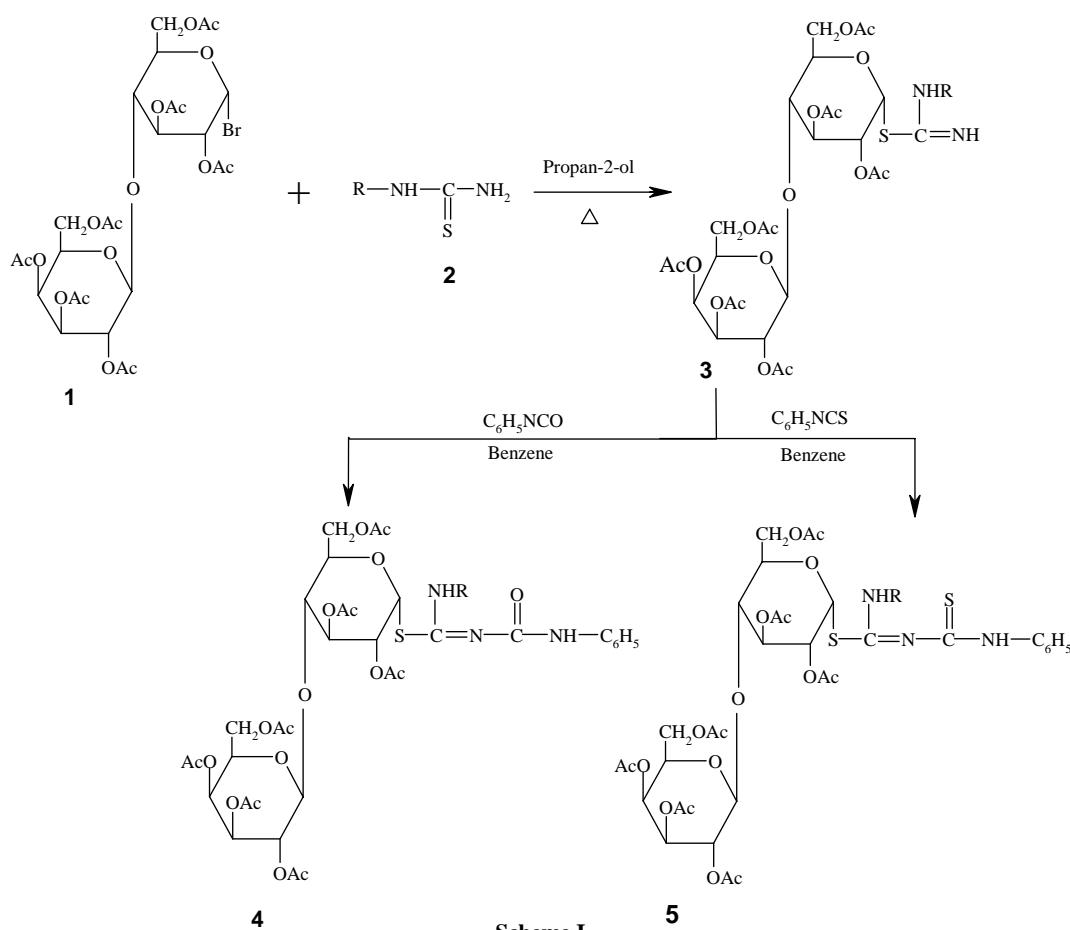
**Keywords:** Isothiobiurets, isodithiobiurets, arylisothiocarbamides, phenyl isocyanate, phenyl isothiocyanate

IPC: Int.Cl.<sup>8</sup> C 07 C

Recently, we have reported a method for the synthesis of S-hepta-O-acetyl lactosyl-1-arylisothiocarbamides **1** by the interaction of hepta-O-acetyl lactosyl bromide<sup>2</sup> and arylthiocarbamides. In view of the applications of S-lactosyl compounds in medicinal chemistry and in many other ways<sup>3</sup>, it appeared interesting to synthesize some more thiolactosides. In the present note the synthesis of several S-hepta-O-acetyl lactosyl-1,5-disubstituted-2-isothiobiurets **4** and 1,5-disubstituted-2,4-isodithiobiurets **5** has been reported by the interaction of S-hepta-O-acetyl lactosyl-1-arylisothiocarbamides **3** with phenyl isocyanate and phenyl isothiocyanate<sup>4</sup>, respectively (**Scheme I**).

S-Hepta-O-acetyl lactosyl-1-arylisothiocarbamides **3a-g** on reaction with phenyl isocyanate in dry benzene for 24 hr at room temperature gave clear solution. The benzene solution on trituration with pet. ether (60-80°) furnished granular solids **4** (**Table I**). These solids were purified with ethanol-water. Based on elemental analysis and IR<sup>5,7</sup>, NMR<sup>6,10</sup> and mass<sup>11,12</sup> spectral analysis (see

Experimental) the structures of the compounds were assigned as S-hepta-O-acetyl-lactosyl-1-aryl-5-phenyl-2-isothiobiurets **4a-g** (**Scheme I**).


Condensation of S-hepta-O-acetyl lactosyl-1-aryl-isothiocarbamides **3a-g** with phenyl isothiocyanate was carried out by refluxing in benzene for 9 hr, it gave clear solution. The benzene solution was triturated with pet. ether (60-80°) to give crystalline solids **5a-g**. Based on elemental analysis (**Table I**) and IR<sup>6-8</sup>, NMR<sup>7-11</sup> and mass<sup>12,13</sup> spectral analysis (see Experimental) the structures of **5a-g** were assigned as S-hepta-O-acetyl lactosyl-1-aryl-5-phenyl-2,4-isodithiobiurets (**Scheme I**).

## Experimental Section

Melting points were recorded on a melting point apparatus and are uncorrected. IR spectra of the compounds were recorded in KBr on a FT IR Perkin-Elmer (4000-450cm<sup>-1</sup>) spectrophotometer; <sup>1</sup>H NMR spectra in CDCl<sub>3</sub> on a Bruker DRX-300 (300 MHz FT NMR) spectrometer; and mass spectra on a Jeol SX-102 (FAB) instrument. Specific rotations were recorded on digital polarimeter.

**S-Hepta-O-acetyl lactosyl-1-aryl-5-phenyl-2-isothiobiuret 4. General procedure.** S-Hepta-O-acetyl lactosyl-1-arylisothiocarbamides (0.0025 M) and phenyl isocyanate (0.0025 M) in dry benzene at room temperature for 24 hr gave a clear solution. The benzene solution on trituration several times with pet. ether (60-80°) furnished granular solids **4**. The characterization data of compounds **4a-g** are given in (**Table I**).

**S-Hepta-O-acetyl lactosyl-1-aryl-5-phenyl-2,4-isodithiobiuret 5. General procedure.** Condensation of S-hepta-O-acetyl lactosyl-1-arylisothiocarbamides (0.0025 M) and phenyl isothiocyanate (0.0025M) by refluxing in dry benzene for 9 hr gave clear solution. The benzene solution triturated several times with pet. ether (60-80°) to give granular solids **5**. The characterization data of compounds **5a-g** are given in (**Table I**).



Scheme I

Where, R = a) phenyl, b) *o*-Cl-phenyl, c) *m*-Cl-phenyl, d) *p*-Cl-phenyl,  
e) *o*-tolyl, f) *m*-tolyl, g) *p*-tolyl

Table I — Characterization data of compounds **4a-g** and **5a-g**

| Compd     | R                   | mp<br>°C | Yield<br>(%) | Found (Calcd) % | $[\alpha]_D^{31}$ (c,<br>in $\text{CHCl}_3$ ) | $^1\text{H}$ NMR<br>( $\delta$ , ppm) | Mass<br>(m/z)                                                                                                |
|-----------|---------------------|----------|--------------|-----------------|-----------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------|
| <b>4a</b> | Phenyl              | 163-65   | 91.78        | 4.88<br>(4.72)  | 3.63<br>(3.59)                                | -350.87°<br>(1.026)                   | 7.8-7.0 (m, 10H, Ar-H) 5.8-<br>5.2 (s, 2H, NH) 4.8-3.4 (m,<br>14H, lactose unit) 2.3-1.8 (m,<br>21H, 7-Ac)   |
| <b>4b</b> | <i>o</i> -Cl-phenyl | 148-49   | 91.70        | 4.75<br>(4.55)  | 3.61<br>(3.46)                                | -315.27°<br>(1.015)                   | 7.8-6.8 (m, 9H, Ar-H), 5.5-<br>5.3 (s, 2H, NH), 5.3-3.4 (m,<br>14H, lactose unit), 2.4-1.8<br>(m, 21H, 7-Ac) |
| <b>4c</b> | <i>m</i> -Cl-phenyl | 136-37   | 82.96        | 4.33<br>(4.55)  | 3.60<br>(3.46)                                | -197.43°<br>(1.013)                   | -                                                                                                            |
| <b>4d</b> | <i>p</i> -Cl-phenyl | 165-67   | 65.50        | 4.58<br>(4.55)  | 3.76<br>(3.46)                                | -275.40°<br>(1.053)                   | -                                                                                                            |
| <b>4e</b> | <i>o</i> -tolyl     | 152-55   | 96.33        | 4.78<br>(4.65)  | 3.77<br>(3.54)                                | -245.28°<br>(1.060)                   | 7.8-6.8 (m, 9H, Ar-H), 5.5-<br>5.3 (s, 2H, NH), 5.3-3.4 (m,<br>14H, lactose unit) 2.3-1.8 (m,<br>21H, 7-Ac)  |

—Contd

**Table I**—Characterization data of compounds **4a-g** and **5a-g**—*Contd*

| Compd     | R                   | mp<br>°C | Yield<br>(%) | Found (Calcd) % | $[\alpha]_D^{31}$ (c,<br>in $\text{CHCl}_3$ ) | $^1\text{H}$ NMR<br>( $\delta$ , ppm) | Mass<br>(m/z)                                                                                                            |
|-----------|---------------------|----------|--------------|-----------------|-----------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| <b>4f</b> | <i>m</i> -tolyl     | 143-44   | 87.15        | 4.79<br>(4.65)  | 3.80<br>(3.54)                                | -333.33°<br>(1.020)                   | -                                                                                                                        |
| <b>4g</b> | <i>p</i> -tolyl     | 160-62   | 73.39        | 4.89<br>(4.65)  | 3.81<br>(3.54)                                | -280.00°<br>(1.000)                   | -                                                                                                                        |
| <b>5a</b> | Phenyl              | 142-45   | 90.28        | 4.57<br>(4.64)  | 7.24<br>(7.07)                                | -331.26°<br>(0.966)                   | 7.5-4.9 (m, 10H, Ar-H) 4.7-<br>4.4 (d, $J$ = 9.2, 2H, NH), 4.3-<br>3.0 (m, 14H, lactose unit),<br>2.3-1.9 (m, 21H, 7-Ac) |
| <b>5b</b> | <i>o</i> -Cl-phenyl | 153-54   | 83.51        | 4.33<br>(4.47)  | 6.47<br>(6.81)                                | -260.00°<br>(1.000)                   | 7.5-7.2 (s, 9H, Ar-H), 5.1-4.9<br>(d, $J$ = 9.3, 2H, NH), 4.9-2.4<br>(m, 14H, lactose unit), 2.2-<br>1.9 (m, 21H, 7-Ac)  |
| <b>5c</b> | <i>m</i> -Cl-phenyl | 130-32   | 75.60        | 4.55<br>(4.47)  | 7.07<br>(6.81)                                | -313.39°<br>(1.053)                   | -                                                                                                                        |
| <b>5d</b> | <i>p</i> -Cl-phenyl | 135      | 77.14        | 4.69<br>(4.47)  | 7.16<br>(6.81)                                | -310.00°<br>(1.000)                   | -                                                                                                                        |
| <b>5e</b> | <i>o</i> -tolyl     | 123-25   | 88.31        | 4.51<br>(4.57)  | 7.11<br>(6.96)                                | -225.49°<br>(1.020)                   | 7.5-7.2 (s, 9H, Ar-H), 5.1-4.9<br>(d, $J$ = 9.1, 2H, NH), 4.9-2.4<br>(m, 14H, lactose unit), 2.2-<br>1.9 (m, 21H, 7-Ac)  |
| <b>5f</b> | <i>m</i> -tolyl     | 164-65   | 92.13        | 4.47<br>(4.57)  | 7.17<br>(6.96)                                | -251.76°<br>(0.913)                   | -                                                                                                                        |
| <b>5g</b> | <i>p</i> -tolyl     | 160-62   | 79.77        | 4.71<br>(4.57)  | 7.29<br>(6.96)                                | -302.11°<br>(0.993)                   | -                                                                                                                        |

Satisfactory analyses of C and H were obtained for all the compounds.

### Acknowledgement

Authors are thankful to RSIC, CDRI, Lucknow for providing spectral data. Authors also thank Prof. R N Kale, Head, Department of Chemistry and Dr V B Wagh, Principal, for providing necessary facilities.

### References

- 1 Mangte D V & Deshmukh S P, *J Indian Chem Soc*, **82**, **2005**, 1025.
- 2 Mangte D V & Deshmukh S P, *Int J Chem Sci*, **2**(2), **2004**, 159.
- 3 Clamp J R, Haugh L, Hickson J L & Whistler R L, *Adv Carbohydr Chem Biochem*, Vol 16, (Academic Press, New York), **1961**, 159.
- 4 Vogel A I, *A Textbook of Practical Organic Chemistry*, Vol 5, (ELBS, Longmann), **1989**, 967.
- 5 Segal L, O'Connor R T & Eggerton F V, *J Chem Soc*, **82**, **1960**, 2807.
- 6 Zhiqun D, Fanqui Q, Chengtai W & Wei L, *J Chem Res (S)*, **3**, **2001**, 106.
- 7 Varma R, Kulkarni S Y, Jose C I & Pansave V S, *Carbohydr Res*, **133**, **1984**, 25.
- 8 Isac-Garcia J, Calvo-Flores F G, Hernandez-Mateo F & Santoya-Gonzalez F, *Eur J Org Chem*, **2001**, 388.
- 9 Jimenez Blanco J L, Barria C S, Benito J M, Mellet C O, Fuentes J, Santoyo-Gonzalez F & Garcia Fernandez J M, *Synthesis*, **11**, **1999**, 1911.
- 10 Cao S, Tropper F D & Roy R, *Tetrahedron*, **51** (24), **1995**, 6679.
- 11 Lonngren J & Svensson S, *Adv Carbohydr Chem Biochem*, Vol 39, (Academic Press, New York), **1974**, 98.
- 12 Budzikiewicz H, Djerassi C & Williams D H, *Structural elucidation of natural products by mass spectroscopy*, **1964**.